164 research outputs found

    Multi-Locus Analysis Reveals A Different Pattern of Genetic Diversity for Mitochondrial and Nuclear DNA between Wild and Domestic Pigs in East Asia

    Get PDF
    BACKGROUND: A major reduction of genetic diversity in mtDNA occurred during the domestication of East Asian pigs. However, the extent to which genetic diversity has been lost in the nuclear genome is uncertain. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationships and demographic history of domestic pigs and their ancestors, wild boars, we investigated 14 nuclear markers (including 8 functional genes, 2 pseudogenes and 4 intergenic regions) from 11 different chromosomes in East Asia-wide samples and pooled them with previously obtained mtDNA data for a combined analysis. PRINCIPAL FINDINGS: The results indicated that domestic pigs and wild boars possess comparable levels of nucleotide diversity across the nuclear genome, which is inconsistent with patterns that have been found in mitochondrial genome. CONCLUSIONS: This incongruence between the mtDNA and nuclear genomes is suggestive of a large-scale backcross between male wild boars and female domestic pigs in East Asia. Our data reveal the impacts of founder effects and backcross on the pig genome and help us better understand the complex demographic histories of East Asian pigs, which will be useful for future work on artificial selection

    Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    Get PDF
    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2Ξ± in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2Ξ± in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance

    Analysis of Poly(ADP-Ribose) Polymerases in Arabidopsis Telomere Biology

    Get PDF
    Maintaining the length of the telomere tract at chromosome ends is a complex process vital to normal cell division. Telomere length is controlled through the action of telomerase as well as a cadre of telomere-associated proteins that facilitate replication of the chromosome end and protect it from eliciting a DNA damage response. In vertebrates, multiple poly(ADP-ribose) polymerases (PARPs) have been implicated in the regulation of telomere length, telomerase activity and chromosome end protection. Here we investigate the role of PARPs in plant telomere biology. We analyzed Arabidopsis thaliana mutants null for PARP1 and PARP2 as well as plants treated with the PARP competitive inhibitor 3-AB. Plants deficient in PARP were hypersensitive to genotoxic stress, and expression of PARP1 and PARP2 mRNA was elevated in response to MMS or zeocin treatment or by the loss of telomerase. Additionally, PARP1 mRNA was induced in parp2 mutants, and conversely, PARP2 mRNA was induced in parp1 mutants. PARP3 mRNA, by contrast, was elevated in both parp1 and parp2 mutants, but not in seedlings treated with 3-AB or zeocin. PARP mutants and 3-AB treated plants displayed robust telomerase activity, no significant changes in telomere length, and no end-to-end chromosome fusions. Although there remains a possibility that PARPs play a role in Arabidopsis telomere biology, these findings argue that the contribution is a minor one

    The priB Gene of Klebsiella pneumoniae Encodes a 104-Amino Acid Protein That Is Similar in Structure and Function to Escherichia coli PriB

    Get PDF
    Primosome protein PriB is a single-stranded DNA-binding protein that serves as an accessory factor for PriA helicase-catalyzed origin-independent reinitiation of DNA replication in bacteria. A recent report describes the identification of a novel PriB protein in Klebsiella pneumoniae that is significantly shorter than most sequenced PriB homologs. The K. pneumoniae PriB protein is proposed to comprise 55 amino acid residues, in contrast to E. coli PriB which comprises 104 amino acid residues and has a length that is typical of most sequenced PriB homologs. Here, we report results of a sequence analysis that suggests that the priB gene of K. pneumoniae encodes a 104-amino acid PriB protein, akin to its E. coli counterpart. Furthermore, we have cloned the K. pneumoniae priB gene and purified the 104-amino acid K. pneumoniae PriB protein. Gel filtration experiments reveal that the K. pneumoniae PriB protein is a dimer, and equilibrium DNA binding experiments demonstrate that K. pneumoniae PriB's single-stranded DNA-binding activity is similar to that of E. coli PriB. These results indicate that the PriB homolog of K. pneumoniae is similar in structure and in function to that of E. coli

    Coupling of Glucose Deprivation with Impaired Histone H2B Monoubiquitination in Tumors

    Get PDF
    Metabolic reprogramming is associated with tumorigenesis. However, glucose metabolism in tumors is poorly understood. Here, we report that glucose levels are significantly lower in bulk tumor specimens than those in normal tissues of the same tissue origins. We show that mono-ubiquitinated histone H2B (uH2B) is a semi-quantitative histone marker for glucose. We further show that loss of uH2B occurs specifically in cancer cells from a wide array of tumor specimens of breast, colon, lung and additional 23 anatomic sites. In contrast, uH2B levels remain high in stromal tissues or non-cancerous cells in the tumor specimens. Taken together, our data suggest that glucose deficiency and loss of uH2B are novel properties of cancer cells in vivo, which may represent important regulatory mechanisms of tumorigenesis

    A Gene's Ability to Buffer Variation Is Predicted by Its Fitness Contribution and Genetic Interactions

    Get PDF
    BACKGROUND: Many single-gene knockouts result in increased phenotypic (e.g., morphological) variability among the mutant's offspring. This has been interpreted as an intrinsic ability of genes to buffer genetic and environmental variation. A phenotypic capacitor is a gene that appears to mask phenotypic variation: when knocked out, the offspring shows more variability than the wild type. Theory predicts that this phenotypic potential should be correlated with a gene's knockout fitness and its number of negative genetic interactions. Based on experimentally measured phenotypic capacity, it was suggested that knockout fitness was unimportant, but that phenotypic capacitors tend to be hubs in genetic and physical interaction networks. METHODOLOGY/PRINCIPAL FINDINGS: We re-analyse the available experimental data in a combined model, which includes knockout fitness and network parameters as well as expression level and protein length as predictors of phenotypic potential. Contrary to previous conclusions, we find that the strongest predictor is in fact haploid knockout fitness (responsible for 9% of the variation in phenotypic potential), with an additional contribution from the genetic interaction network (5%); once these two factors are taken into account, protein-protein interactions do not make any additional contribution to the variation in phenotypic potential. CONCLUSIONS/SIGNIFICANCE: We conclude that phenotypic potential is not a mysterious "emergent" property of cellular networks. Instead, it is very simply determined by the overall fitness reduction of the organism (which in its compromised state can no longer compensate for multiple factors that contribute to phenotypic variation), and by the number (and presumably nature) of genetic interactions of the knocked-out gene. In this light, Hsp90, the prototypical phenotypic capacitor, may not be representative: typical phenotypic capacitors are not direct "buffers" of variation, but are simply genes encoding central cellular functions

    Pink-Colored Grape Berry Is the Result of Short Insertion in Intron of Color Regulatory Gene

    Get PDF
    We report here that pink grape berries were obtained by a short insertion in the intron of the MybA1 gene, a gene that regulates grape berry color. Genetic variation was detected among the MybA1 genes from grapes cultivated worldwide. PCR analysis of the MybA1 gene demonstrated that the size of the MybA1 gene in the red allele differs among grapes. Oriental V. vinifera bearing pink berries has the longest MybA1 gene among grapes, whereas the shortest MybA1 gene was detected in occidental V. vinifera grapes. The nucleotide sequences of the MybA1 genes demonstrated that oriental V. vinifera has two additional gene fragments (44 bp and 111 bp) in the promoter region of the MybA1 gene in the red allele and another 33 bp fragment in the second intron of the MybA1 gene in the red allele. The short insertion in the intron decreased the transcription activity in the model system and retained MybA1 transcripts with unspliced intron in the total RNA. From the experiments using deletion mutants of the 33 bp short insertion, 16 bp of the 3β€² end in the insertion is a key structure for a defect in splicing of MybA1 transcripts. Thus, a weakly colored grape berry might be a result of the short insertion in the intron of a color regulatory gene. This is new evidence concerning the molecular mechanism of the fate of grape berry color. These findings are expected to contribute to the further understanding of the color variation in grape berries, which is correlated with the evolutional events occurring in the MybA1 gene of grapes

    Cloning and Characterization of a Putative TAC1 Ortholog Associated with Leaf Angle in Maize (Zea mays L.)

    Get PDF
    BACKGROUND: Modifying plant architecture to increase photosynthesis efficiency and reduce shade avoidance response is very important for further yield improvement when crops are grown in high density. Identification of alleles controlling leaf angle in maize is needed to provide insight into molecular mechanism of leaf development and achieving ideal plant architecture to improve grain yield. METHODOLOGY/PRINCIPAL FINDINGS: The gene cloning was done by using comparative genomics, and then performing real-time polymerase chain reaction (RT-PCR) analysis to assay gene expression. The gene function was validated by sequence dissimilarity analysis and QTL mapping using a functional cleaved amplified polymorphism (CAP). CONCLUSIONS: The leaf angle is controlled by a major quantitative trait locus, ZmTAC1 (Zea mays L. Leaf Angle Control 1). ZmTAC1 has 4 exons encoding a protein with 263 amino acids, and its domains are the same as those of the rice OsTAC1 protein. ZmTAC1 was found to be located in the region of qLA2 by using the CAP marker and the F(2:3) families from the cross between Yu82 and Shen137. Real-time PCR analysis revealed ZmTAC1 expression was the highest in the leaf-sheath pulvinus, less in the leaf and shoot apical meristem, and the lowest in the root. A nucleotide difference in the 5'-untranslated region (UTR) between the compact inbred line Yu82 ("CTCC") and the expanded inbred line Shen137 ("CCCC") influences the expression level of ZmTAC1, further controlling the size of the leaf angle. Sequence verification of the change in the 5'-UTR revealed ZmTAC1 with "CTCC" was present in 13 compact inbred lines and ZmTAC1 with "CCCC" was present in 18 expanded inbred lines, indicating ZmTAC1 had been extensively utilized in breeding with regard to the improvement of the maize plant architecture
    • …
    corecore